DIRECTIONS: Print and complete!
Hand it in inside your 2 pocket folder along with Units \#1 \& \#2!!

Define each:

- Logarithm - \qquad
- Common Logarithm - \qquad
- Natural Logarithm - \qquad
- Label with the correct word (index(root), radicand, exponent, radical)

Sketch the graph of each:
$\xrightarrow{\text { Exponential Growth }}$

Section \#2: Formulas/Equations/Rules
-Exponent Rules

$$
\begin{aligned}
& x^{0}=\ldots \quad x^{1}=\ldots \quad x^{a} \bullet x^{b}= \\
& \left(x^{a}\right)^{b}= \\
& (x y)^{a}=
\end{aligned}
$$

-Exponential Growth/Decay Standard Equation

$$
\begin{aligned}
y=a b^{x} \text { where } \mathbf{y} & =\ldots & \mathbf{a}=\ldots \\
\mathbf{b} & =\ldots & \mathbf{x}= \\
(1+\mathbf{r}) \text { growth; }(\mathbf{1}-\mathbf{r}) \text { decay; } & \mathbf{r} & =
\end{aligned}
$$

- Compound Interest Formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \text { where } \mathbf{A}=\square \mathbf{P}=\square \quad \mathbf{r}=\square \quad \mathbf{n}=\square \quad \text { compounded annually } \mathbf{n}=\mathbf{1}
$$ compounded quarterly $\mathbf{n}=$ \qquad compounded monthly $\mathbf{n}=$ \qquad compounded weekly

$\mathbf{n}=$ \qquad compounded daily $\mathbf{n}=$ \qquad

- Continuous Growth/Decay Formula

$$
A=P e^{r t} \text { where } \mathbf{A}=
$$

\qquad $\mathbf{P}=$ \qquad

$$
\mathbf{t}=
$$

\qquad

$$
\mathbf{r}=
$$

\qquad growth: r is positive decay: r is negative
-Log Properties

$\log _{b} 1=$	$\log _{b} b=$	$\log _{b}\left(m^{n}\right)=$
$\log _{b}(m n)=$	$\log _{b}\left(\frac{m}{n}\right)=$	

Change of base formula: $\log _{b} m=$

Section \#3: Key methods and concepts (write out the process while solving the example)

- How to convert a radical to a fractional exponent
\#1) $5 \sqrt[3]{x^{2} y}$
- How to convert negative exponents to positive exponents
\#3) $\frac{2 x^{4} y^{-4} z^{-3}}{6 x^{2} y^{-3} z^{4}}$
-How to convert a fractional exponent to a radical
\#2) $8 x^{\frac{2}{3}}$
- How to solve an equation with a fractional exponent
\#4) $2 m^{\frac{3}{4}}=54$
-How to solve exponential equations algebraically using common bases
\#5) : Solve $25^{2 x-1}=125^{3 x+4}$
- Rewrite log equation as exponential equation $\log _{b} m=x$
- Rewrite exponential equation as log equation

$$
x^{a}=p
$$

-How to solve logarithmic equations algebraically
\#6) $3 \log _{8}(x+6)+5=6$
\#7) $\log _{3}(5 x+20)-\log _{3} x=2$
-How to solve exponential equations algebraically (round to the nearest hundredth)
\#8) $30=3 e^{5 x}+9$
\#9) $50(2)^{x}=1000$
-How to find the inverse of a logarithmic equation algebraically
\#10) $f(x)=\log _{5}(x-2)+7$
-How to find the inverse of an exponential equation algebraically
\#11) $f(x)=10^{x}-4$

Answers: \#1) $5 x^{\frac{2}{3}} y^{\frac{1}{3}}$ \#2) $8 \sqrt[3]{x^{2}}$ \#3) $\frac{x^{2}}{3 y z^{7}}$ \#4) 81 \#5) -14/5 \#6) -4 \#7) 5 \#8). 39 \#9) 4.32 \#10) $f^{-1}(x)=5^{x-7}+2 \quad$ \#11) $f^{-1}(x)=\log (x+4)$

